Challenges for peatland utilisation under recent EU framework conditions

W. Wichtmann

Comparative analysis, INtegration and ExemplaRy implEmentation of cLimate smart LAnd use practices on organic soils: Progressing paludicultures after centuries of peatland destruction and neglect

CINDERELLA
Use of peatlands and GHG emissions

- Arable use, drainage based utilization, peat extract
- Low intensity utilization
- Nature protected grasslands
- Reed Canary Grass
- Alder
- Reed, Sedges, Cattail

Drainage based peatland utilization
Emissions reduction
Low intensity utilization of peatlands
Paludiculture
Rewetting

Water table [cm] (medium)

Drainage based management of peatlands

Is financed by subsidies like

- Direct payments
- Renewable energy law (if maize for biogas is produced)
- ……
- and produces societal costs
- Damage costs for dairy farms = 1.900 € 282 €
 for cattle farms = 680 – 1.200 € -65 €
 default value = 80 €
Drainage based management of peatlands

productivity: 8 – 25 t DM/ha*a

emissions: >20 - 60 t CO₂ eq/ha*a
New concept →
Paludiculture*

- Cultivation of biomass on wet and rewetted peatlands
 - bog: peat moss
 - fen: Common Reed, Reed Canary Grass, Sedges, Alder, Cattail...

- Utilisation of biomass for industry and energy
 → peat conservation
 → reducing GHG emissions
 → replacing fossil resources

*“palus” – lat.: swamp
Reed canary grass (*Phalaris arundinacea*)

productivity: 3.5 – 15 t DM/ha*a

emissions: ∼12 t CO₂eq/ha*a
Common Reed (*Phragmites australis*)

productivity: 3 – >25 t DM/ha*a

emissions: ~10 t CO$_2$eq/ha*a
Sedges (Carex spp.)

3 – 12 t DM/ha*a

0 – 8 t CO₂-eq / ha*a
Cattail (*Typha* spec.)

Productivity: 5 - 22 t DM/ha*a

Emissions: ~10 - 15 t CO$_2$eq/ha*a
Black Alder (*Alnus glutinosa*)

productivity: 3 – 10 t DM/ha*a

emissions: ~ 0 t CO2eq/ha*a
General aims of CINDERELLA

• to extend the scientific base for a sustainable use of wetlands and to make alternative uses accessible to farmers and land authorities.
 – give an overview on productive species, provenances and breeds;
 – assessment of economics of paludiculture, including ecosystem services;
 – promote the exchange of scientific and technical knowledge;
 – stimulate the cooperation among partners (countries and regions, stakeholders);
 – optimize synergies between regional climate change mitigation and adaptation;
 – contribute to the necessary transformation of drainage-based peatland agriculture

→ paludiculture
Adjustment of the current framework conditions is required, including:

- Recognition of paludiculture as a form of agriculture.
- Discontinuation of counterproductive incentives.
- Application of the polluter pays principle.
- Rewarding the land use associated to ecosystem services.
- Accounting of greenhouse gas emissions from peatland use in the reporting for the Convention on Climate Change (UNFCCC).
The main hindering factors for large scale rewetting and paludiculture

- Under the current agricultural legislation, the receipt of direct payments (CAP, First Pillar) and funding for rural development (CAP, Second Pillar) is common practice for drained petlands, but seems impossible for reed and cattail dominated paludicultures (winter harvest).
- For permanent crops, the establishment of paludicultures on permanent grassland can be hampered by the rules protecting permanent grassland.
Sensibilisation of Ministries by raising awareness for:

– Open questions: reed and cattail from paludiculture are no agricultural products.

– direct payments and agro-environmental/climate schemes must be made available for paludiculture.

→ Allow ploughing of dry permanent grasslands before rewetting and planting.

→ Legal adjustments by exemptions from the permanent grassland protection rules (at least outside Nat2000 areas) must be adopted.
EU should arrange regulations that National ministries responsible for agriculture can

- introduce at least an equal treatment of paludiculture compared to drainage based peatland agriculture regarding CAP payments,
- generally allow conversion from EU protected permanent grassland on organic soils to reed or cattail dominated paludiculture.

To make it happen:

`peatland rich’ countries must request constructive solutions for the innovative agri-cultural approach of paludiculture on EU level
Paludiculture – productive use of wet peatlands

Table of Content

Preface: Paludiculture – Sustainable use of Wet Peatlands V
1 Paludiculture as an inclusive solution ... 1
2 The limits of drainage based peatland utilisation ... 3
2.1 Fen peatland use in Northeast Germany ... 3
2.2 Drainage induced peat degradation processes ... 7
2.3 Impact of drainage on productivity ... 9
2.4 Ecosystem services of peatlands ... 13
3 Production and utilisation of paludiculture biomass 21
3.1 Promising plants for paludiculture ... 21
3.2 Edible and medical plants from paludiculture ... 37
3.3 The production of fodder in paludiculture ... 39
3.4 Material use of biomass from paludiculture ... 43
3.5 Solid energy from biomass .. 44
3.6 Liquid and gaseous biofuels ... 54
4 Harvest and logistics ... 59
4.1 Transferability of wet and rewetted fens .. 59
4.2 Agricultural machinery for wet areas ... 63
4.3 Logistics of biomass production on wet peatlands 70
4.4 The feasibility of biomass harvest from paludiculture 76
5 Ecosystem services provided by paludiculture .. 79
5.1 Greenhouse gas emissions .. 79
5.2 Biodiversity ... 94
5.3 Local climate and hydrology ... 99
5.4 Nutrient balance and water pollution control ... 104
6 Economics of paludiculture .. 109
6.1 Economic aspects of paludiculture on the farm level 109
6.2 Certification of biomass from paludiculture ... 119
6.3 The creation of regional value .. 131
6.4 Welfare aspects of land use on peatland ... 133
7 Legal and political aspects of paludiculture ... 143
7.1 The legal framework .. 143
7.2 Agricultural policy ... 149
7.3 Control mechanisms and incentives for paludiculture 152
8 Social aspects of paludiculture implementation ... 157
8.1 The relationship between humans and mines over time 157
8.2 The interaction of paludiculture and the public .. 160
8.3 Acceptance and implementation at the producer level 168
8.4 Transfer of knowledge ... 171
9 Sustainability and implementation of paludiculture 175
9.1 Sustainable land use .. 175
9.2 Availability of suitable areas .. 178
9.3 The decision-support tool TORBOS ... 185
9.4 Technical measures for implementing paludiculture 188
9.5 Implementation and administrative approval in Germany 191
10 Paludiculture in a global context ... 197
10.1 Global demands and international commitments 199
10.2 The global potential and perspectives for paludiculture 200
10.3 Rewetting and paludiculture in Mecklenburg-West Pomerania 204
10.4 Biomass from rewetted peatlands as a substitute for peat for promoting biodiversity .. 205
10.5 Paludiculture for biodiversity and peatland protection 207
10.6 Paludiculture as sustainable land use ... 208
10.7 Paper from the water ... 223
10.8 Harvesting Typha spp. for nutrient capture and bioeconomy ... 224
11 The way out of the desert – What needs to be done 229
11.1 Problems of peatland management and the necessity of paludiculture .. 229
11.2 Challenges for practice .. 230
11.3 Awareness raising and communication .. 231
11.4 Politics and society .. 231
11.5 Research questions ... 232
11.6 Outlook ... 233
11.7 References ... 235
List of contributors .. 263
Thanks for listening!

Comparative analysis, INtegration anD ExemplaRy implEmentation of cLimate smart LAnd use practices on organic soils: Progressing paludicultures after centuries of peatland destruction and neglect

CINDERELLA